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Abstract. The diluted mixed-spin Ising system consisting of spif2 Jand spin 1 with a
transverse random field is studied by the use of an effective-field method within the framework
of a single-site cluster theory. The equations are derived using a probability distribution method
based on the use of Van der Waerden identities. The phase diagrams are investigated for various
lattice structures both for pure and diluted systems, where the transverse field is bimodally and
trimodally distributed.

1. Introduction

Over the last few decades, there has been considerable interest in the theoretical study of
the effect of quantum fluctuations in classical spin models. The simplest of such systems
is the Ising model in a transverse field. The spji2-1ransverse Ising model was originally
introduced by De Gennes [1] as a valuable model for the tunnelling of the proton in
hydrogen-bonded ferroelectrics [2] such as the,RE, type. Since then, it has been
successfully applied to several physical systems, such as cooperative Jahn—Teller systems
[3] (like DyVO, and T,VOy), ordering in rare earth compounds with a singlet crystal-field
ground state [4] and also to some real magnetic materials with strong uniaxial anisotropy in a
transverse field [5]. It has been extensively studied by the use of various techniques [6-10],
including the effective field treatment [11, 12] based on a generalized but approximated
Callen—Suzuki relation derived byaBarreto, Fittipaldi and Zeks. In addition to the works

on the two-state spin systems, the spin-one transverse Ising models [13-19] have received
some attention, as well as the quantum transverse spin higher than one [20-24].

Recently, another problem of growing interest is associated with the transverse random-
field Ising model (TRFIM). Special attention has been devoted to bimodal (two peaks) and
trimodal distributions for the transverse random field. This model has been investigated
using different approximate schemes, such as the mean field and mean-field renormalization
group (MFRG) [25], a method of combining the MFRG with the discretized path-integral
representation (DPIR) [22, 26, 27] and an approach combining the pair approximation with
DPIR [28]. These investigations predicted a discontinuity in the phase diagrdin=a0,
between the bimodal and trimodal random distributions of the transverse field. Using
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Suzuki—Trotter formula [29], Yokota [30] gave arguments which show that the above-

mentioned discontinuity at the ground state seems to be an artifact of the mean-field-like

approximation. We point out that all transition lines are second order and the directional

randomness of the transverse field does not change the critical behaviour [30] of the system.
Recently, attention has also been directed to the two-sublattice mixed £piar

spin-S Ising systems described by the Hamiltonian

H = _Z‘]ijaizsjz — ZFiUiX —_ ZF]SJ\ (1)
(i) i J

whereo/” and ¥ (¢ = x, z) are components of spin/2 and spins operators at sites
and j, respectively.J;; is the exchange interactiofi; andTI"; are transverse fields and the
first summation is carried out only over nearest-neighbour pairs of spins. The Hamiltonian
(1) is of interest because it has less translational symmetry than its single-spin counterparts.
It shows spin reversal symmetrg{ — —o%, §* - —8% o — 40, §* — +8%)
which is spontaneously broken below a field-dependent critical temperature. In the absence
of transverse fieldsIy = I'; = 0), the system is well adapted to study a certain type
of ferrimagnetism [31]. It has been shown that the MnNi(EDTAx6Hcomplex is an
example of a mixed-spin system [32]. The mixed-spin Ising system, in the ca$e=df,
has been studied by the renormalization group technique [33, 34], by high-temperature series
expansions [35], by free-fermion approximation [36] and by the finite-cluster approximation
[37]. The effects of dilution on the phase diagrams of these kind of system are also
investigated by performing various techniques [34, 37, 38]. On the other hand, the influence
of the transverse field[{ # 0) on the transition temperature have been investigated by
using different approximate schemes, such that the effective-field theory based on the
approximated [23,39] and exact generalized Van der Waerden identity [24,40,41], the
discretized path-integral representation [19] and the two-spin cluster approximation [19].

As far as we know, no works have been concerned with the site diluted mixed spin
Ising model in a random transverse field. This system can be described by (1) in which we
introduce the site occupancy numligmwhich takes the value 0 or 1 depending on whether
the site is occupied or not, and a probability distribution funct@(";) for I';. Thus, the
Hamiltonian of such a system takes the form

H=-) Uj&§o;S;— Z [0 — Z [;§;S;. (2)
) i J
In the present work, we limit our study to the caSe= 1. The transverse fields; are
assumed to be independent variables and obey the trimodal probability distribution
oIy) = psly) + a 5 P [T =T) + 8 + 1] 3)

where the parametep measures the fraction of spins in the system not exposed to the
transverse field”. At p = 1 or " = 0, the system reduces to the simple diluted mixed
spin-1/2 and spin-1 Ising model.

The first purpose of this paper is to investigate the phase diagrams of the mixed spin
1/2 and spin 1 in a transverse random field which is bimodaly=( 0) and trimodally
(p # 0) distributed. To this end, we use an effective method within the framework of a
single-site cluster theory [42]. The effective-field equations are derived using a probability
distribution method based on the use of generalized Van der Waerden identities [43] that
account exactly for the single-site kinematic relations. The second goal is to examine the
effects of the site dilution on the obtained critical ferromagnetic frontiers. Since the derived
state equations are applicable for arbitrary coordination number, phase diagrams are given
when the system is chosen to be honeycomb, square and simple cubic lattices.
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The outline of this work is as follows. In section 2, we describe the effective-field
theory based on a probability distribution method. In section 3, the phase diagrams of the
undiluted and diluted system are examined and discussed. Finally, we comment on our
results in section 4.

2. Theoretical framework

The theoretical framework we adopt in the study of the transverse mixed gpiaid
spin-1 Ising model described by the Hamiltonian (2), is the effective-field theory based on a
single-site cluster theory. In this approach, attention is focused on a cluster consisting of just
a single selected spin, labelledand the neighbouring spins with which it directly interacts.

To this end, the total Hamiltonian given by (2) is split into two pafis= H, + H’, where

H, includes all terms off associated with the lattice site namely

H = ~(( X 4665} o~ Tituo; @
J

H(;g = _(Z Joié{)éio'f)Sg - Fo%—osj (5)

if the lattice siteo belongs to ther or S sublattice, respectively.

First, the problem consists in evaluating the sublattice longitudinal and transverse
components of the magnetization and its quadrupolar moments. FollowinBag&eto
et al [11, 12], the starting point of our approach, in the framework of the single-site cluster
theory, is the set of the following identities

o) = (Tt 2P ©
o, EXN(—BHY)
and
NIy TrSo(Sg)n eXF(_:BH(;S)
e )‘< Trs, exp(—p H) > )

whereg = 1/T, « = x or z specifies the components of the spin operatgfsand 7 and
n =1, 2 correspond to the magnetization and the quadrupolar moment, respectively. Tr
(or Trs,) means the partial trace with respect to theublattice site» (or S-sublattice site
o) and{...) denotes the canonical thermal average.

The equations (6) and (7) neglect the fact thgtand H do not commute. Therefore,
they are not exact for an Ising system in a transverse field. Nevertheless, they have been
successfully applied to a number of interesting transverse Ising systems. We emphasize that
in the Ising limit "; = 0, Vi), the Hamiltonian contains only; andS;. Then, relations (6)
and (7) become exact identities. One notes that skifeand HS depend or€, (£, = 0 or
1), (6) and (7) can be written in the form

1-¢, Tr,, o exp(—BH.)
o — T o , [4 0 —(;0
) = g o) + & e S SR ©
—S
an 1-¢, an <Trs,)(S§)” eXIO(—ﬁHO)>
((SH") = Tre((S;)") + &, — 9)
25+1 Trs, exp(—pH,)
which imply
Tr, ¥ exp(—BH,)
A o — 5 o0 [ [ 10
(oo = & T S EEE) (10
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—
Trs, (S2)" exp(—BH
<so(ss)">=so< I, (5 )" exXp—h ”)> (11)
Trs, exp(—BH )
where
H = —(J Zg,s;>ag —T,07
j
and

H = —(J Zg,-o;)s; .

Now we have to evaluate the partial traces on the right-hand side of (10) and (11) over
the states of the selected spins, labelledo do this, one can either first find the eigenstates
and eigenvalues cﬁz andﬁj in a representation in whick* and S¢ are diagonal, or more
conveniently one makes use of a coordinate rotation [16] which turns the Hamiltcﬂ?@ms
andﬁf into diagonal forms. Foﬁf, the latter method proves the simplest to use. For a
fixed configuration of the site occupational numbgrand transverse fields;, we obtain

(EOU:;X> = %'(,<fa(E5, F0)> (12)
(Eo(S)") = E(F(Es, Ty)) (13)
with
: _Es Ex
f (E57 Fo) - 2E]_ tanh( 2 ) (14)
B _ & 2sinhE>)
Fi(Eq, To) = E; [1 + 2 coshEo)] (15)
1 (BT,)? + (2(E5)* + (BI,)?) COSHE,)
F2(Es,To) = (E)2 [1 4+ 2 cosiE»)] (16)
and

Es=BY Jy&S  Ei=((Es)’+(BT))Y?

j=1
E;=BY Jukio;  Ez=((E;)*+ (BT,)")"?
i=1

where z is the nearest-neighbour coordination number of the lattice. The corresponding
results for the transverse componenéso)) and (£,(SY)") may be obtained from the
longitudinal components by interchangidgy/g andT, in (12) for (§,0), andE, /8 and

T, in (13) for (&,(S5)").

The next step is to carry out the configurational averaging over the site occupational
numbersg;, to be denoted by. . .),.

In order to perform the thermal and configurational averaging on the right-hand side of
(14)-(16), we expand the function'(Es, I',) and ;¥ (E,, I',) as finite polynomials of;
ando}, respectively, that correctly account for the single-site kinematic relations. This can
conveniently be done by employing the Van der Waerden operators [43]

fU(Es, Tp) =[] 0985, &) £ (Es, T,) (17)
J

FP(E;,To) =[] 0F, &) Fy (Es, T) (18)
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where
067, &) = (0] + 3)05.172 + (=07 + 3)847_1/2] X [£:6,.1 4 (1 — £, 0] (19)
0 (S5, &) = [5(S; + (SHD s 1+ 5(=S; + ($HDs: 1+ (L= (SH)ds: ]

x[£0g.1+ (1 —&;)d¢, 0] (20)

whered 4 , is a forward Kronecker delta-function substituting any operatéo the right by

its eigenvaluez. In order to carry out the thermal and configurational averaging, we have
to deal with correlation functions. In this work, we consider the simplest approximation
by neglecting correlations between quantities pertaining to different sites, but we include
the correlation between the site disorder and the local configurational-dependent thermal
averages of the spin operators [44] and use the exact identities

o\ _ 1-c¢ a\n

(A=) = 571 1Tro((Su) ) (21)
a _ l1-c¢ a

(A =&)o, N = o ¥ 1Tf0(00) (22)

which are directly derived from (8)—(11). denotes the average site concentration defined
by ¢ = (&;),. Doing this we find

z +1 1
(f*(Es. o)), = 1‘[[ PRI s,)]fauss, ) (23)
j=1 5_;:—15/:0
4 +1/2 1
(F(Ee. T =[] [ > D R}, s»]F,;*(Ea, T, (24)
i=1boi=—1/25=0
with
+1 1
P(S5, &)= Y Y allh, s, 8, (25)
11=71 12=O
+1/2 1
RO &)= ) Y blka k2)ds, 8, (26)
k1=—1/2kp=0

where

a(£1, 1) = 3(Em}y +m3,) (27)

a(0,1) = (c — miy) (28)

a(l;,0) = 1(1—c¢) (29)

b(£1, 1) = <g + M;) (30)

b(£3.00=3(1-0) (31)
where

wi= (&), mi, = (& SH" ) (32)

Since the transverse field is randomly distributed, we have to perform the random average
of I'; according to the probability distribution functiof(I";) given by (3). The ordering
parameterg.® andm¢ are then defined ag® = n%, m¢ = m¢,, where the bar denotes the
transverse random field average.
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Thus, using the probability distributions, we obtain the following set of coupled
equations fou® andm

+1 +1 1 1 Z
pE=c Yy D>y [Ha(lj,sp}ﬁ@lsi(m,...,szsi(la;p, r) (33)
g=0Lj=1

n=1 L=1&=0
+1/2 +1/2 1

1
k=—1/2  k=-1/26=0 £=0

[Hb(ki, Si):|F_,?(SlUf(k1)7 L E0i (k)i p. T)  (34)

i=1

wherep; andm;, in (27)—(31) are replaced by* andm;, respectively (34); and
Fowp) = [ 0w Ty,

Fe(x,p,T) = / Q) F(x,T,)dl,

with SJ.Z(I) = [ andof (k) = k. We like to note that these equations can be solved directly
by numerical iteration without further algebraic calculations. This treatment has successfully
been used in the study of other systems [45]. Since the total number of loipseatively

large, the combined sums in (33) and (34) extend over large numbégs (j21)]° and

[2(20 + 1)]?, respectively) of terms, leading to quite long computational time, particularly
near the second-order phase transition. Therefore, it is advantageous to carry out further
algebraic manipulations on (23) and (24) imploying the differential operator technique

fa(ESa ) = eXFxESDx)fa(x’ [y)lx—0 (35)

F(E;, Tp) = eXp(Es Dy) F (x, Tp) -0 (36)
or the integral representation

FeEs T = [ destx = E9) 7T 37)

Ff(E(,, I'y) Zfdxa(x_Ea)E?(xa I'y) (38)

with the delta-function
1
8(x) = —/ dy exp(iyx). (39)
2

Choosing the differential operator approach, we obtain from equations (33) to (36)

1 1 z
pe = c[ > > alh, I exp(lllzﬁmx)] F¥@, p D=0 (40)
11:—1]2:0
1/2 1 T
mg:c[ >0 bk kg)exp(klkz,BJDx)] Fi(x, p, Dli=o (41)
k1=—1/2 k=0

which can be reduced to
u = c[3(mi +m3) exp(BJ Dy) + 5(=mi + m3) exp(—pJ D) + (1 — my)I*
x f(x, p, Dli=o (42)

« c . BJ D, c —BJ D, B :
mn—cl:<2+/t)exp< 5 )+<2 u)exp( 5 >+(1 c):|

X F%(x, p, T)|x=0- (43)
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Using the multinomial expansion, we find

I Z—hi1

Iuoz —c Z Z 2—m— nzcnlcglz”l(mi + mg)nl(_mi + mzz)nz(l _ mzz)z—m—nz

n1:0n2:0
X fe(BJ (1~ n2), p.T) (44)
z—ng n s
=_C Z Z CVllC:linl( —+ uw > (E _ /’LZ> (1 _ C)zfnlfnz
ni= 0"12_0 2
—(BJ
XFf(%(nl—nz)yl” F) (45)

where C? are the binomial coefficients!/[p!(n — p)!]. The iteration process of these
equations becomes suitable for the study of the present system even in the vicinity of the
critical temperature.

3. Results and discussions

In this paper we are interested in investigating the phase diagram of the system described
by the Hamiltonian (2). At high temperature, the longitudinal magnetization moments
andm; are both equal to zero. Below a transition temperaiirewe have spontaneous
ordering («* # 0, mj # 0), while the corresponding transverse magnetizatighsand

m} are unequal zero at all temperatures. To calculateit is preferable to expand the
right-hand sides of (44) and (45) with respectsi9 (or ©*). Doing this we find

Z ZI—hi1 ni np

ui=cd D> Z 2RI, Ol Gl (= 1) (m3) 2 (m) e

ni= Onz 011 Olz
x(1— mz)z—m—nzF(ﬂJ(nl —n2), p,I") (46)
and

Z—ny1 nj na

=c Z Z Z Z CnlCZ nlc}{lllcilzzz ni— n2+i1+i2(_1)i2(c)nl-‘rnz—il—iz(IuZ)il+i2

ny= Onz—Oll 012

—(BJ
X(l _ c)zfmfnzFl;x (%(}11 — }’12), P, F) . (47)
For thez-componentsd = z), they can be written in the following form
ut = Ay(BJ. p.c. Tomymi + By(BJ, p,c, T my[mi]® + - -- (48)
mj = Aa(BJ. p.c.T)u* + Ba(BJ, p.c. D[ + - - (49)

where A;, B;, ... (i = 1,2) are obtained from (46) and (47) by choosing the appropriate
corresponding combinations of indicgs(j = 1, 2). Retaining only terms linear in* and
mj, the second-order transition temperature is then obtained from the equation

1=A1(BJ,p,c,I',m5)A2(BJ, p,c,T) (50)
wherem}, is the solution of the equation (47) far* — 0, namely

z z—m _ J
mZL —c Z Z Cnlcgznlz—m—nz(c)nﬁ-nz(l _ c)z—m—nzFZZ ('37(”1 — nz), D, F) . (51)

n1—0 na=l
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3.1. The undiluted system

First, we study the undiluted case £ 1) for the simple cubic latticez(= 6). In figure 1,

we represent the phase diagrams in tiiel{) plane for various values of. When the
transverse random field is bimodally distributgd=£ 0), the critical temperature decreases
gradually from its valueT.(I' = 0), to vanish at some critical valuB. = 3.52. The
phase diagram so obtained is the same as that obtained by two of us (NB and RZ) [46]
for the mixed spin-12 and spin-1 Ising system in a uniform transverse field. As shown
in the figure, when we consider a trimodal random field distribution i.e4 0), a finite
critical transverse field". also exists for relatively small values pf This means that the
thermodynamic properties of the system are continuous between the two distributions. We
have to point out that the spin/2 Ising model in the trimodal random transverse field (3)
has been investigated within the standard mean-field or the mean-field-like approximations
[25,28]. These studies show a crossover from the trimodal distribuporg (1) to the
bimodal distribution p = 0) indicating a discontinuity between these two cases in the
ground state phase diagram. Yokota [30] discussed this result and, using the Suzuki—Trotter
formula [29], he showed that the above discontinuity may be an artifact of the mean-
field-like approximation. In our present work, we have not found a discontinuity in the
phase diagram &t = 0 (see figure 1) between the trimodal and the bimodal random-field
distributions. Thus, our calculations agree with Yokota’s conjecture. This is due to the fact
that we have used a method which treats correctly auto-spin correlations, while neglecting
correlations only between spins on different sites; whereas in the mean-field approximation
all correlations are neglected. Moreover, we note the existence of a critical péloé

p (p* = 0.478 for z = 6) indicating two qualitatively different behaviours of the system
which depend on the range of. Thus, for 0< p < p*, the system exhibits at the
ground state a phase transition at a finite critical vdlyeof I'. But for p* < p < 1,

2.0

Te/s

0.0 1

0.0 3.0 6.0 I 9.0

Figure 1. The phase diagram ifi-I" plane of the mixed spiny2 and spin-1 Ising system in a
random transverse field on simple cubic lattige=(6). The number accompanying each curve
denotes the value gb.
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there is no critical transverse field, and therefore, at very low temperature, the ordered
state is stable for any value of the transverse field strength. As expected, we can see
in figure 1 that, for a fixed value of', the critical temperature is an increasing function

of p.

We note here that the phase diagrams, in the case of the honeygomB)(and the
square £ = 4) lattices, are qualitatively similar to that plotted in figure 1 for the simple cubic
lattice. In table 1, we give the corresponding values of the critical transition temperature
T. whenT" = 0, the critical transverse field. when p = 0, and the critical valug*.

Table 1. The critical temperaturd,, the critical transverse fieltf. and the critical valuep*
for the undiluted system, and the percolation threshkdldor the honeycombz(= 3), square
(z = 4) and simple cubicz(= 6) lattices.

T./]J(C=0,c=1 T./J(p=0,c=1) p*c=1 T =0

(o]

3 0891 1.42 0.657 0.5378
4 1.29 2.12 0.600 0.4133
6 2111 3.52 0.478 0.2824

3.2. The site diluted system

First, we investigate the system in the absence of the transverseTfieldq or p = 1)

by solving numerically (50). For the simple cubic lattice € 6), the phase diagram is
represented in figure 2 and it expresses the standard result of a diluted magnetic system
[37,38]. The critical temperaturg&. decreases linearly from its value in the mixed Ising
systemT.(c = 1), to reduce rapidly to zero at the percolation threshdld= 0.282 46

which is quite good compared with the best value of 0.31 calculated by Sykes and

z=6, ['=0
20
Te/J
1.0
00 i ] i
0.0 0.5 c 1.0

Figure 2. The phase diagram of the diluted mixed spjf2 and spin-1 Ising system on simple
cubic lattice ¢ = 6) in the absence of the transverse fidid=£ 0, or p = 1).
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Essam [47]. In table 1, we also give the valuecdfcalculated for different coordination
numberz.

Secondly, when the transverse random field is a bimodal distribugioca (Q), results
for the case of the simple cubic lattice are summarized in figure 3. These give the sections
of the critical surfacel.(c, I') with planes of fixed values of the dilution parameterAs is
expected wher* < ¢ < 1, the general behaviour of the critical temperatiiré, I') falls
with decreasing: and increasind”, and vanishes at a critical valde. of the transverse
field strength which depends on the valuecofThese results have a form similar to those
observed in the dilute Ising model in a transverse field [48, 49].

z=6, p=0
2.0
T/l
0.0
0.0 20 4.0
/]

Figure 3. The phase diagram if—I" plane of the diluted mixed spin/2 and spin-1 Ising
system in a bimodal transverse field £ 0), when the value of is changed frome = 1 to 0.4.

Next, we investigate the phase diagrams of the system when the form of the random
transverse field is chosen to be a trimodal distributip40). In the pure system, we have
defined a critical value op, namely p* above which, at low temperature, the system does
not present a finite critical valug./J which means that the ferromagnetic order is stable
for any value of the transverse field As expected, such behaviour appears in the diluted
case, but the location gf* depends on the concentratiorof magnetic sites. As shown
in figure 4 for the honeycomlx (= 3), square { = 4), and simple cubicz(= 6) lattices,

p* increases with decreasing valuescoivhich is physically reasonable. The variation of
the critical temperature with the transverse fi€lgl/, keepingc and p fixed, is obtained

from the (50). Results for the case of the simple cubic lattice are shown in figure 5. For a
given value ofc, we have plotted the two kinds of behaviour which the system has when
the fractionp of spins not exposed to the transverse field is greater (dashed line) or less
(solid line) than the corresponding critical valpé(c). For the chosen values of used

in figure 5, the corresponding* values are:p*(c = 1) = 0.478, p*(c = 0, 8) = 0.535,

p*(c =0.6) = 0.631 andp*(c = 0.4) = 0.803.

Furthermore, it is interesting to investigate the phase diagrams of the system in the
(T—) plane whenl" and p are kept fixed. This allows us to know the influencel'oand
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1.0

p*

06 |

0.4 L
0.0 0.5 Y 1.0

Figure 4. The dependence of the critical value gf as a function of the dilution parameter
for different lattice structures;(= 3, 4 and 6).

2.0

Tell

00
0.0 2.0 4.0 /] 6.0

Figure 5. The phase diagram iff—I" plane of the diluted mixed spinf2 and spin-1 Ising
system in a random transverse field on simple cubic lattice- (6), when the value of is

changed fromr = 1 to 0.4, withp = 0.2 (solid lines),p = 0.6 (dashed lines) ang = 0.85

(broken lines).

p on the site-dilution model, particularly on the dilution curve depicted in figure 2. The
results are represented in figure 6(a) and (b) for various valu€swdien the random field
is bimodally (p = 0) and trimodally p = 0) distributed, respectively. As seen from the
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p=0

T/I

@

2.0

To/J

0.0

0.0 05 1.0

(b)

Figure 6. (a) The phase diagram ifi—c plane of the diluted mixed spin/2 and spin-1 Ising
system in a random transverse field on simple cubic lattice=(6), with p = 0 (bimodal
distribution). The number accompanying each curve denotes the vallie ¢) The phase
diagram inT— plane of the diluted mixed spin/2 and spin-1 Ising system in a random
transverse field on simple cubic lattice=€ 6), with p = 0.2 (solid lines) andp = 0.6 (dashed
lines). The number accompanying each curve denotes the valDe of

figures, the obtained curves have the same shape as the dilution curve, and there appear
different thresholds as solutions of the equatibiic, p, ') = 0. We also note that the
critical temperaturd, falls with decreasing and p, and increasing".
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Figure 7. (a) The zero-temperature phase diagram of the diluted mixed g@iasid spin-1 Ising
system in a random transverse field on simple cubic lattice 6). The number accompanying
each curve denotes the valueof (b) The zero-temperature phase diagram of the diluted mixed
spin-1/2 and spin-1 Ising system in a random transverse field on simple cubic lagtices],

for different values ofp, on an enlarged scale within the vicinity of the percolation threshold.

On the other hand, the zero-temperature phase diagram for the system under study,
is of considerable interest. It is obtained from the solution of the (50) keefing 0.
Figure 7(a) shows the dependence of the critical valu®n the concentration when p
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takes different values. As clearly seen from figure 7(b), the part of the phase diagram near
the percolation threshold* represents an outstanding feature. In particular, ffoe 0

the critical transverse field. takes a finite value at = ¢* and shows a discontinuity
change from a finite value to zero at= 0.2637 belowc*. This result may support the
conjecture made by Harris [8] for the diluted transverse Ising model (DTIM), which can
be summarized as follows: at percolation threshdidthe critical transverse field should
display a discontinuity. It is worthy of notice here that the investigation of the DTIM
by series expansion techniques [48], CPA treatments and effective-field theory [50] led to
a critical transverse field’. which reduces continuously to zero @at= ¢*. However, the
position space renormalization group methods [9, 51] showed the existence of a discontinuity
of I'. atc = ¢*, and therefore they verified the Harris conjecture. On the other hand, when
the transverse random field is taken as a trimodal distributionf£i£.0) I'. shows, for a

given value ofp, a discontinuity similar to that found in the case of bimodal distribution

(p = 0) as shown in figure 7(b). The discontinuity Bf is located on a jg-dependent)

well defined value ofc, and its height increases with increasipg We can also see in
figure 7(b) that, for all values op, the discontinuities appear only in a narrow range of

¢ (0.2637 < ¢ < ¢*), and atc = ¢* the critical fieldI'. takes a finite value which is
independent of the value of.

Next, let us clarify the role of the applied random transverse field in the diluted mixed
spin-1/2 and spin-1 Ising system. To this end, we have examined its phase diagrams in the
(T, T) space, selecting two values of(c = 0.29 andc = 0.28) greater and less than the
percolation threshold* = 0.28246. For the case of the bimodal distributign=€ 0), the
results are plotted in figure 8(a). For the system with 0.29, the variation of the critical
temperature with the transverse field takes the same form as those depicted in figure 3
sincec > c¢*. As shown in the figure, an important behaviour of the system is found
with ¢ = 0.28 (c less thanc*): T, reduces to zero df = 0 but, in a certain range df
(0 < T < I',) the system exhibits a second-order transition at a finite valug. efhich
vanishes afi" = I'.. These results indicate that for small transverse field strength, the
system may have a magnetic ordering even i less tharc*. As seen from figure 7(b),
such behaviour may be obtained in the system when the dilution parameter belongs to
the range @637 < ¢ < ¢*. On the other hand, when the transverse field is trimodally
distributed p # 0), the phase diagrams are represented in figure 8(b) for various values
of p, when the concentration takes the above values. Thus, foe= 0.29, theT, curves
are plotted forp = 0.2 and p = 0.99 which are, respectively, less and greater than its
corresponding critical valug* = 0.983 (see figure 4). The obtained transition lines have
the same shape as those shown in figure 5. For the case @28 the variation off,. with
r, for different values ofp, are represented in figure 8(b). They are qualitatively similar
to the results (figure 8(a)) obtained for the bimodal distribution when c¢*. In contrast
to the case: > ¢*, we notice that, for a given < ¢* (¢ = 0.28 in figure 8(b)), the region
which corresponds to the long-range ferromagnetic order, decreases with increaaiinlg
disappears at adependent value gf (see figure 7(b) and figure 8(b)). Therefore, when
is less than 0.2637, there is no magnetic ordering for any valugsaofdI".

4. Conclusions

In this paper, we have studied the undiluted and the diluted mixed-spin Ising systems
consisting of spin-12 and spin-1 in a transverse random field, which is bimodally and
trimodally distributed. We have used an effective field method within the framework of a
single-site cluster theory. In this approach, we have derived the equations using a probability
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Figure 8. (a) The phase diagram of the diluted mixed spji2-and spin-1 Ising system in a
bimodal transverse field on simple cubic lattice{ 6), whenc = 0.29 andc = 0.28. (b) The
phase diagram of the diluted mixed spif2land spin-1 Ising system in a random transverse

field on simple cubic latticez(= 6), whenc = 0.29 (dashed lines) and = 0.28 (solid lines)
with various values op.

distribution method based on the use of Van der Waerden identities accounting exactly for
the single-site kinematic relations. We have also included the correlation between the site
disorder and the local configurational-dependent thermal average of the spin operators.
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For the undiluted mixed-spin Ising system on simple cubic lattice, we have investigated
the variation of the critical temperatu@ with the transverse field for various values of
p (p measures the fraction of spins not exposed o We have not found a discontinuity
in the ground state phase diagram between the bimodalf{i.e. 0) and trimodal (i.e.

p # 0) random-field distributions. This result agrees with Yokota's conjecture [30]. It is
worthy to note here that the discontinuity found7at= 0 in the spin-¥2 Ising models in a
transverse random field [25, 28] may be explained [30] as an artifact of the used mean-field-
like approximations. On the other hand, we have defined a critical yslseparating two
qualitatively different behaviours of the system: fedess thanp*, the system exhibits, at

the ground state, a phase transition at a finite critical valuef the transverse field .
However, forp greater tharp*, I'. does not exist and the ordered state is stable at very
low temperatures for any value of the transverse field strength.

For the site-diluted case, we have investigated the phase diagrams of the system for
different values of the dilution parameterwhen the transverse random field is taken as a
bimodal distribution. We have found that for the valuescajreater than the percolation
thresholdc¢* = 0.2824, T, decreases with decreasirgand increasingl’. When the
transverse random field is trimodally distributed, we also have noted (as in the pure case) the
existence of the critical valug* which increases with decreasing values ofurthermore,
we have plotted the zero-temperature phase diagram i the plane for various values
of p. Near the percolation threshold, the phase diagrams represent an outstanding feature.
First, atc = ¢* the critical transverse field'. takes ap-independent finite value, and
exhibits a discontinuity change from a finite value to zero gt-dependent value of
below c¢*. In particular, for the casp = 0, this may support the Harris conjecture [8]. We
mention that the location of these discontinuities (fokOp < 1) appears in the narrow
range 02637 < ¢ < c¢*. Secondly, in this latter range, we have found that the system may
have a magnetic ordering in a well defined range of the transverse field, and this behaviour
disappears when approaches 0.2637.
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