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Abstract. The diluted mixed-spin Ising system consisting of spin 1/2 and spin 1 with a
transverse random field is studied by the use of an effective-field method within the framework
of a single-site cluster theory. The equations are derived using a probability distribution method
based on the use of Van der Waerden identities. The phase diagrams are investigated for various
lattice structures both for pure and diluted systems, where the transverse field is bimodally and
trimodally distributed.

1. Introduction

Over the last few decades, there has been considerable interest in the theoretical study of
the effect of quantum fluctuations in classical spin models. The simplest of such systems
is the Ising model in a transverse field. The spin-1/2 transverse Ising model was originally
introduced by De Gennes [1] as a valuable model for the tunnelling of the proton in
hydrogen-bonded ferroelectrics [2] such as the KH2PO4 type. Since then, it has been
successfully applied to several physical systems, such as cooperative Jahn–Teller systems
[3] (like DyVO4 and TbVO4), ordering in rare earth compounds with a singlet crystal-field
ground state [4] and also to some real magnetic materials with strong uniaxial anisotropy in a
transverse field [5]. It has been extensively studied by the use of various techniques [6–10],
including the effective field treatment [11, 12] based on a generalized but approximated
Callen–Suzuki relation derived by Sà Barreto, Fittipaldi and Zeks. In addition to the works
on the two-state spin systems, the spin-one transverse Ising models [13–19] have received
some attention, as well as the quantum transverse spin higher than one [20–24].

Recently, another problem of growing interest is associated with the transverse random-
field Ising model (TRFIM). Special attention has been devoted to bimodal (two peaks) and
trimodal distributions for the transverse random field. This model has been investigated
using different approximate schemes, such as the mean field and mean-field renormalization
group (MFRG) [25], a method of combining the MFRG with the discretized path-integral
representation (DPIR) [22, 26, 27] and an approach combining the pair approximation with
DPIR [28]. These investigations predicted a discontinuity in the phase diagram atT = 0,
between the bimodal and trimodal random distributions of the transverse field. Using
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Suzuki–Trotter formula [29], Yokota [30] gave arguments which show that the above-
mentioned discontinuity at the ground state seems to be an artifact of the mean-field-like
approximation. We point out that all transition lines are second order and the directional
randomness of the transverse field does not change the critical behaviour [30] of the system.

Recently, attention has also been directed to the two-sublattice mixed spin-1/2 and
spin-S Ising systems described by the Hamiltonian

H = −
∑
〈ij〉

Jijσ
z
i S

z
j −

∑
i

0iσ
x
i −

∑
j

0jS
x
j (1)

whereσαi and Sαj (α = x, z) are components of spin-1/2 and spin-S operators at sitesi
andj , respectively.Jij is the exchange interaction,0i and0j are transverse fields and the
first summation is carried out only over nearest-neighbour pairs of spins. The Hamiltonian
(1) is of interest because it has less translational symmetry than its single-spin counterparts.
It shows spin reversal symmetry (σ z → −σ z, Sz → −Sz, σx → +σx , Sx → +Sx)
which is spontaneously broken below a field-dependent critical temperature. In the absence
of transverse fields (0i = 0j = 0), the system is well adapted to study a certain type
of ferrimagnetism [31]. It has been shown that the MnNi(EDTA).6H2O complex is an
example of a mixed-spin system [32]. The mixed-spin Ising system, in the case ofS = 1,
has been studied by the renormalization group technique [33, 34], by high-temperature series
expansions [35], by free-fermion approximation [36] and by the finite-cluster approximation
[37]. The effects of dilution on the phase diagrams of these kind of system are also
investigated by performing various techniques [34, 37, 38]. On the other hand, the influence
of the transverse field (0i 6= 0) on the transition temperature have been investigated by
using different approximate schemes, such that the effective-field theory based on the
approximated [23, 39] and exact generalized Van der Waerden identity [24, 40, 41], the
discretized path-integral representation [19] and the two-spin cluster approximation [19].

As far as we know, no works have been concerned with the site diluted mixed spin
Ising model in a random transverse field. This system can be described by (1) in which we
introduce the site occupancy numberξi which takes the value 0 or 1 depending on whether
the site is occupied or not, and a probability distribution functionQ(0i) for 0i . Thus, the
Hamiltonian of such a system takes the form

H = −
∑
〈ij〉

Jij ξiξjσ
z
i S

z
j −

∑
i

0iξiσ
x
i −

∑
j

0j ξjS
x
j . (2)

In the present work, we limit our study to the caseS = 1. The transverse fields0i are
assumed to be independent variables and obey the trimodal probability distribution

Q(0i) = pδ(0i)+ (1− p)
2

[δ(0i − 0)+ δ(0i + 0)] (3)

where the parameterp measures the fraction of spins in the system not exposed to the
transverse field0. At p = 1 or 0 = 0, the system reduces to the simple diluted mixed
spin-1/2 and spin-1 Ising model.

The first purpose of this paper is to investigate the phase diagrams of the mixed spin
1/2 and spin 1 in a transverse random field which is bimodally (p = 0) and trimodally
(p 6= 0) distributed. To this end, we use an effective method within the framework of a
single-site cluster theory [42]. The effective-field equations are derived using a probability
distribution method based on the use of generalized Van der Waerden identities [43] that
account exactly for the single-site kinematic relations. The second goal is to examine the
effects of the site dilution on the obtained critical ferromagnetic frontiers. Since the derived
state equations are applicable for arbitrary coordination number, phase diagrams are given
when the system is chosen to be honeycomb, square and simple cubic lattices.
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The outline of this work is as follows. In section 2, we describe the effective-field
theory based on a probability distribution method. In section 3, the phase diagrams of the
undiluted and diluted system are examined and discussed. Finally, we comment on our
results in section 4.

2. Theoretical framework

The theoretical framework we adopt in the study of the transverse mixed spin-1/2 and
spin-1 Ising model described by the Hamiltonian (2), is the effective-field theory based on a
single-site cluster theory. In this approach, attention is focused on a cluster consisting of just
a single selected spin, labelledo, and the neighbouring spins with which it directly interacts.
To this end, the total Hamiltonian given by (2) is split into two parts,H = Ho+H ′, where
Ho includes all terms ofH associated with the lattice siteo, namely

Hσ
o = −

(∑
j

Joj ξoξjS
z
j

)
σ zo − 0oξoσ xo (4)

HS
o = −

(∑
i

Joiξoξiσ
z
i

)
Szo − 0oξoSxo (5)

if the lattice siteo belongs to theσ or S sublattice, respectively.
First, the problem consists in evaluating the sublattice longitudinal and transverse

components of the magnetization and its quadrupolar moments. Following Sà Barreto
et al [11, 12], the starting point of our approach, in the framework of the single-site cluster
theory, is the set of the following identities

〈σαo 〉 =
〈

Trσo σ
α
o exp(−βHσ

o )

Trσo exp(−βHσ
o )

〉
(6)

and

〈(Sαo )n〉 =
〈

TrSo (S
α
o )
n exp(−βHS

o )

TrSo exp(−βHS
o )

〉
(7)

whereβ = 1/T , α = x or z specifies the components of the spin operatorsσαi andSαj and
n = 1, 2 correspond to the magnetization and the quadrupolar moment, respectively. Trσo

(or TrSo ) means the partial trace with respect to theσ -sublattice siteo (or S-sublattice site
o) and〈. . .〉 denotes the canonical thermal average.

The equations (6) and (7) neglect the fact thatHo andH ′ do not commute. Therefore,
they are not exact for an Ising system in a transverse field. Nevertheless, they have been
successfully applied to a number of interesting transverse Ising systems. We emphasize that
in the Ising limit (0i = 0, ∀i), the Hamiltonian contains onlyσ zi andSzj . Then, relations (6)
and (7) become exact identities. One notes that sinceHσ

o andHS
o depend onξo (ξo = 0 or

1), (6) and (7) can be written in the form

〈σαo 〉 =
1− ξo
2σ + 1

Tro(σ
α
o )+ ξo

〈
Trσo σ

α
o exp(−βHσ

o )

Trσo exp(−βHσ

o )

〉
(8)

〈(Sαo )n〉 =
1− ξo
2S + 1

Tro((S
α
o )
n)+ ξo

〈
TrSo (S

α
o )
n exp(−βHS

o)

TrSo exp(−βHS

o)

〉
(9)

which imply

〈ξoσ αo 〉 = ξo
〈

Trσo σ
α
o exp(−βHσ

o )

Trσo exp(−βHσ

o )

〉
(10)
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〈ξo(Sαo )n〉 = ξo
〈

TrSo (S
α
o )
n exp(−βHS

o)

TrSo exp(−βHS

o)

〉
(11)

where

H
σ

o = −
(
J
∑
j

ξjS
z
j

)
σ zo − 0oσ xo

and

H
S

o = −
(
J
∑
i

ξiσ
z
i

)
Szo − 0oSxo .

Now we have to evaluate the partial traces on the right-hand side of (10) and (11) over
the states of the selected spins, labelledo. To do this, one can either first find the eigenstates

and eigenvalues ofH
σ

o andH
S

o in a representation in whichσ z andSz are diagonal, or more
conveniently one makes use of a coordinate rotation [16] which turns the HamiltoniansH

σ

0

andH
S

o into diagonal forms. ForH
S

o , the latter method proves the simplest to use. For a
fixed configuration of the site occupational numbersξi and transverse fields0i , we obtain

〈ξoσ αo 〉 = ξo〈f α(ES, 0o)〉 (12)

〈ξo(Sαo )n〉 = ξo〈Fαn (Eσ , 0o)〉 (13)

with

f z(ES, 0o) = ES

2E1
tanh

(
E1

2

)
(14)

Fz1 (Eσ , 0o) =
Eσ

E2

2 sinh(E2)

[1+ 2 cosh(E2)]
(15)

Fz2 (Eσ , 0o) =
1

(E2)2

(β0o)
2+ (2(Eσ )2+ (β0o)2) cosh(E2)

[1+ 2 cosh(E2)]
(16)

and

ES = β
z∑

j=1

Joj ξjS
z
j E1 = ((ES)2+ (β0o)2)1/2

Eσ = β
z∑
i=1

Joiξiσ
z
i E2 = ((Eσ )2+ (β0o)2)1/2

where z is the nearest-neighbour coordination number of the lattice. The corresponding
results for the transverse components〈ξoσ xo 〉 and 〈ξo(Sxo )n〉 may be obtained from the
longitudinal components by interchangingEs/β and0o in (12) for 〈ξoσ xo 〉, andEσ/β and
0o in (13) for 〈ξo(Sxo )n〉.

The next step is to carry out the configurational averaging over the site occupational
numbersξi , to be denoted by〈. . .〉r .

In order to perform the thermal and configurational averaging on the right-hand side of
(14)–(16), we expand the functionsf α(ES, 0o) andFαn (Eσ , 0o) as finite polynomials ofSzj
andσ zi , respectively, that correctly account for the single-site kinematic relations. This can
conveniently be done by employing the Van der Waerden operators [43]

f α(ES, 0o) =
∏
j

O(S)(Szj , ξj )f
α(ES, 0o) (17)

Fαn (Eσ , 0o) =
∏
i

O(σ)(σ zi , ξi)F
α
n (Eσ , 0o) (18)
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where

O(σ)(σ zi , ξi) = [(σ zi + 1
2)δσ zi ,1/2+ (−σ zi + 1

2)δσ zi ,−1/2] × [ξiδξi ,1+ (1− ξi)δξi ,o] (19)

O(S)(Szj , ξj ) = [ 1
2(S

z
j + (Szj )2)δSzj ,1+ 1

2(−Szj + (Szj )2)δSzj ,−1+ (1− (Szj )2)δSzj ,o]
×[ξjδξj ,1+ (1− ξj )δξj ,o] (20)

whereδA,a is a forward Kronecker delta-function substituting any operatorA to the right by
its eigenvaluea. In order to carry out the thermal and configurational averaging, we have
to deal with correlation functions. In this work, we consider the simplest approximation
by neglecting correlations between quantities pertaining to different sites, but we include
the correlation between the site disorder and the local configurational-dependent thermal
averages of the spin operators [44] and use the exact identities

〈〈(1− ξo)(Sαo )n〉〉r =
1− c

2S + 1
Tro((S

α
o )
n) (21)

〈〈(1− ξo)σ αo 〉〉r =
1− c

2σ + 1
Tro(σ

α
o ) (22)

which are directly derived from (8)–(11).c denotes the average site concentration defined
by c = 〈ξi〉r . Doing this we find

〈〈f α(ES, 0o)〉〉r =
z∏

j=1

[ +1∑
Szj=−1

1∑
ξj=0

P(Szj , ξj )

]
f α(ES, 0o) (23)

〈〈Fαn (Eσ , 0o)〉〉r =
z∏
i=1

[ +1/2∑
σ zi =−1/2

1∑
ξi=0

R(σ zi , ξi)

]
Fαn (Eσ , 0o) (24)

with

P(Szj , ξj ) =
+1∑

I1=−1

1∑
I2=0

a(I1, I2)δSzj,I1
δξj,I2 (25)

R(σ zi , ξi) =
+1/2∑

k1=−1/2

1∑
k2=0

b(k1, k2)δσzi,k1
δξi,k2 (26)

where

a(±1, 1) = 1
2(±mzj1+mzj2) (27)

a(0, 1) = (c −mzj2) (28)

a(I1, 0) = 1
3(1− c) (29)

b(± 1
2, 1) =

(
c

2
± µzi

)
(30)

b(± 1
2, 0) = 1

2(1− c) (31)

where

µzi = 〈〈ξiσ zi 〉〉r mzjn = 〈〈ξj (Szj )n〉〉r . (32)

Since the transverse field is randomly distributed, we have to perform the random average
of 0i according to the probability distribution functionQ(0i) given by (3). The ordering
parametersµα andmαn are then defined asµα = µαi , mαn = mαjn, where the bar denotes the
transverse random field average.
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Thus, using the probability distributions, we obtain the following set of coupled
equations forµα andmαn

µα = c
+1∑

I1=−1

. . .

+1∑
Iz=−1

1∑
ξ1=0

. . .

1∑
ξz=0

[ z∏
j=1

a(Ij , ξj )

]
f α(ξ1S

z
1(I1), . . . , ξzS

z
z (Iz);p,0) (33)

mαn = c
+1/2∑

k1=−1/2

. . .

+1/2∑
kz=−1/2

1∑
ξ1=0

. . .

1∑
ξz=0

[ z∏
i=1

b(ki, ξi)

]
Fαn (ξ1σ

z
1(k1), . . . , ξzσ

z
z (kz);p,0) (34)

whereµzi andmzjn in (27)–(31) are replaced byµz andmzn, respectively (34); and

f α(x, p, 0) =
∫
Q(0o)f

α(x, 0o) d0o

Fαn (x, p, 0) =
∫
Q(0o)F

α
n (x, 0o) d0o

with Szj (I ) = I andσ zi (k) = k. We like to note that these equations can be solved directly
by numerical iteration without further algebraic calculations. This treatment has successfully
been used in the study of other systems [45]. Since the total number of loops 2z is relatively
large, the combined sums in (33) and (34) extend over large numbers ([2(2S + 1)]z and
[2(2σ + 1)]z, respectively) of terms, leading to quite long computational time, particularly
near the second-order phase transition. Therefore, it is advantageous to carry out further
algebraic manipulations on (23) and (24) imploying the differential operator technique

f α(ES, 0o) = exp(ESDx)f
α(x, 0o)|x→0 (35)

Fαn (Eσ , 0o) = exp(EσDx)F
α
n (x, 0o)|x→0 (36)

or the integral representation

f α(ES, 0o) =
∫

dx δ(x − ES)f α(x, 0o) (37)

Fαn (Eσ , 0o) =
∫

dx δ(x − Eσ )Fαn (x, 0o) (38)

with the delta-function

δ(x) = 1

2π

∫
dy exp(iyx). (39)

Choosing the differential operator approach, we obtain from equations (33) to (36)

µα = c
[ 1∑
I1=−1

1∑
I2=0

a(I1, I2) exp(I1I2βJDx)

]z
f α(x, p, 0)|x=0 (40)

mαn = c
[ 1/2∑
k1=−1/2

1∑
k2=0

b(k1, k2) exp(k1k2βJDx)

]z
F αn (x, p, 0)|x=0 (41)

which can be reduced to

µα = c[ 1
2(m

z
1+mz2) exp(βJDx)+ 1

2(−mz1+mz2) exp(−βJDx)+ (1−mz2)]z
×f α(x, p, 0)|x=0 (42)

mαn = c
[(
c

2
+ µz

)
exp

(
βJDx

2

)
+
(
c

2
− µz

)
exp

(−βJDx

2

)
+ (1− c)

]z
×Fαn (x, p, 0)|x=0. (43)
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Using the multinomial expansion, we find

µα = c
z∑

n1=0

z−n1∑
n2=0

2−n1−n2Cn1
z C

n2
z−n1

(mz1+mz2)n1(−mz1+mz2)n2(1−mz2)z−n1−n2

×f α(βJ (n1− n2), p, 0) (44)

mαn = c
z∑

n1=0

z−n1∑
n2=0

Cn1
z C

n2
z−n1

(
c

2
+ µz

)n1
(
c

2
− µz

)n2

(1− c)z−n1−n2

×Fαn
(
βJ

2
(n1− n2), p, 0

)
(45)

whereCpn are the binomial coefficientsn!/[p!(n − p)!]. The iteration process of these
equations becomes suitable for the study of the present system even in the vicinity of the
critical temperature.

3. Results and discussions

In this paper we are interested in investigating the phase diagram of the system described
by the Hamiltonian (2). At high temperature, the longitudinal magnetization momentsµz

andmz1 are both equal to zero. Below a transition temperatureTc, we have spontaneous
ordering (µz 6= 0, mz1 6= 0), while the corresponding transverse magnetizationsµx and
mx1 are unequal zero at all temperatures. To calculateTc, it is preferable to expand the
right-hand sides of (44) and (45) with respect tomz1 (or µz). Doing this we find

µα = c
z∑

n1=0

z−n1∑
n2=0

n1∑
i1=0

n2∑
i2=0

2−n1−n2Cn1
z C

n2
z−n1

Ci1n1
Ci2n2

(−1)i2(mz1)
i1+i2(mz2)

n1+n2−i1−i2

×(1−mz2)z−n1−n2f α(βJ (n1− n2), p, 0) (46)

and

mαn = c
z∑

n1=0

z−n1∑
n2=0

n1∑
i1=0

n2∑
i2=0

Cn1
z C

n2
z−n1

Ci1n1
Ci2n2

2−n1−n2+i1+i2(−1)i2(c)n1+n2−i1−i2(µz)i1+i2

×(1− c)z−n1−n2Fαn

(
βJ

2
(n1− n2), p, 0

)
. (47)

For thez-components (α = z), they can be written in the following form

µz = A1(βJ, p, c, 0,m
z
2)m

z
1+ B1(βJ, p, c, 0,m

z
2)[m

z
1]3+ · · · (48)

mz1 = A2(βJ, p, c, 0)µ
z + B2(βJ, p, c, 0)[µ

z]3+ · · · (49)

whereAi, Bi, . . . (i = 1, 2) are obtained from (46) and (47) by choosing the appropriate
corresponding combinations of indicesij (j = 1, 2). Retaining only terms linear inµz and
mz1, the second-order transition temperature is then obtained from the equation

1= A1(βJ, p, c, 0,m
z
2c)A2(βJ, p, c, 0) (50)

wheremz2c is the solution of the equation (47) forµz → 0, namely

mz2c = c
z∑

n1=0

z−n1∑
n2=0

Cn1
z C

n2
z−n1

2−n1−n2(c)n1+n2(1− c)z−n1−n2Fz2

(
βJ

2
(n1− n2), p, 0

)
. (51)
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3.1. The undiluted system

First, we study the undiluted case (c = 1) for the simple cubic lattice (z = 6). In figure 1,
we represent the phase diagrams in the (T , 0) plane for various values ofp. When the
transverse random field is bimodally distributed (p = 0), the critical temperature decreases
gradually from its valueTc(0 = 0), to vanish at some critical value0c = 3.52. The
phase diagram so obtained is the same as that obtained by two of us (NB and RZ) [46]
for the mixed spin-1/2 and spin-1 Ising system in a uniform transverse field. As shown
in the figure, when we consider a trimodal random field distribution (i.e.p 6= 0), a finite
critical transverse field0c also exists for relatively small values ofp. This means that the
thermodynamic properties of the system are continuous between the two distributions. We
have to point out that the spin-1/2 Ising model in the trimodal random transverse field (3)
has been investigated within the standard mean-field or the mean-field-like approximations
[25, 28]. These studies show a crossover from the trimodal distribution (p � 1) to the
bimodal distribution (p = 0) indicating a discontinuity between these two cases in the
ground state phase diagram. Yokota [30] discussed this result and, using the Suzuki–Trotter
formula [29], he showed that the above discontinuity may be an artifact of the mean-
field-like approximation. In our present work, we have not found a discontinuity in the
phase diagram atT = 0 (see figure 1) between the trimodal and the bimodal random-field
distributions. Thus, our calculations agree with Yokota’s conjecture. This is due to the fact
that we have used a method which treats correctly auto-spin correlations, while neglecting
correlations only between spins on different sites; whereas in the mean-field approximation
all correlations are neglected. Moreover, we note the existence of a critical valuep∗ of
p (p∗ = 0.478 for z = 6) indicating two qualitatively different behaviours of the system
which depend on the range ofp. Thus, for 06 p < p∗, the system exhibits at the
ground state a phase transition at a finite critical value0c of 0. But for p∗ < p < 1,

Figure 1. The phase diagram inT –0 plane of the mixed spin-1/2 and spin-1 Ising system in a
random transverse field on simple cubic lattice (z = 6). The number accompanying each curve
denotes the value ofp.
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there is no critical transverse field, and therefore, at very low temperature, the ordered
state is stable for any value of the transverse field strength. As expected, we can see
in figure 1 that, for a fixed value of0, the critical temperature is an increasing function
of p.

We note here that the phase diagrams, in the case of the honeycomb (z = 3) and the
square (z = 4) lattices, are qualitatively similar to that plotted in figure 1 for the simple cubic
lattice. In table 1, we give the corresponding values of the critical transition temperature
Tc when0 = 0, the critical transverse field0c whenp = 0, and the critical valuep∗.

Table 1. The critical temperatureTc, the critical transverse field0c and the critical valuep∗
for the undiluted system, and the percolation thresholdc∗ for the honeycomb (z = 3), square
(z = 4) and simple cubic (z = 6) lattices.

z Tc/J (0 = 0, c = 1) 0c/J (p = 0, c = 1) p∗(c = 1) c∗(0 = 0)

3 0.891 1.42 0.657 0.5378
4 1.29 2.12 0.600 0.4133
6 2.111 3.52 0.478 0.2824

3.2. The site diluted system

First, we investigate the system in the absence of the transverse field (0 = 0 or p = 1)
by solving numerically (50). For the simple cubic lattice (z = 6), the phase diagram is
represented in figure 2 and it expresses the standard result of a diluted magnetic system
[37, 38]. The critical temperatureTc decreases linearly from its value in the mixed Ising
systemTc(c = 1), to reduce rapidly to zero at the percolation thresholdc∗ = 0.282 46
which is quite good compared with the best value of 0.31 calculated by Sykes and

Figure 2. The phase diagram of the diluted mixed spin-1/2 and spin-1 Ising system on simple
cubic lattice (z = 6) in the absence of the transverse field (0 = 0, or p = 1).
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Essam [47]. In table 1, we also give the value ofc∗ calculated for different coordination
numberz.

Secondly, when the transverse random field is a bimodal distribution (p = 0), results
for the case of the simple cubic lattice are summarized in figure 3. These give the sections
of the critical surfaceTc(c, 0) with planes of fixed values of the dilution parameterc. As is
expected whenc∗ < c 6 1, the general behaviour of the critical temperatureTc(c, 0) falls
with decreasingc and increasing0, and vanishes at a critical value0c of the transverse
field strength which depends on the value ofc. These results have a form similar to those
observed in the dilute Ising model in a transverse field [48, 49].

Figure 3. The phase diagram inT –0 plane of the diluted mixed spin-1/2 and spin-1 Ising
system in a bimodal transverse field (p = 0), when the value ofc is changed fromc = 1 to 0.4.

Next, we investigate the phase diagrams of the system when the form of the random
transverse field is chosen to be a trimodal distribution (p 6= 0). In the pure system, we have
defined a critical value ofp, namelyp∗ above which, at low temperature, the system does
not present a finite critical value0c/J which means that the ferromagnetic order is stable
for any value of the transverse field0. As expected, such behaviour appears in the diluted
case, but the location ofp∗ depends on the concentrationc of magnetic sites. As shown
in figure 4 for the honeycomb (z = 3), square (z = 4), and simple cubic (z = 6) lattices,
p∗ increases with decreasing values ofc which is physically reasonable. The variation of
the critical temperature with the transverse field0/J , keepingc andp fixed, is obtained
from the (50). Results for the case of the simple cubic lattice are shown in figure 5. For a
given value ofc, we have plotted the two kinds of behaviour which the system has when
the fractionp of spins not exposed to the transverse field is greater (dashed line) or less
(solid line) than the corresponding critical valuep∗(c). For the chosen values ofc used
in figure 5, the correspondingp∗ values are:p∗(c = 1) = 0.478, p∗(c = 0, 8) = 0.535,
p∗(c = 0.6) = 0.631 andp∗(c = 0.4) = 0.803.

Furthermore, it is interesting to investigate the phase diagrams of the system in the
(T –c) plane when0 andp are kept fixed. This allows us to know the influence of0 and
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Figure 4. The dependence of the critical value ofp∗ as a function of the dilution parameterc,
for different lattice structures (z = 3, 4 and 6).

Figure 5. The phase diagram inT –0 plane of the diluted mixed spin-1/2 and spin-1 Ising
system in a random transverse field on simple cubic lattice (z = 6), when the value ofc is
changed fromc = 1 to 0.4, withp = 0.2 (solid lines),p = 0.6 (dashed lines) andp = 0.85
(broken lines).

p on the site-dilution model, particularly on the dilution curve depicted in figure 2. The
results are represented in figure 6(a) and (b) for various values of0 when the random field
is bimodally (p = 0) and trimodally (p 6= 0) distributed, respectively. As seen from the



3152 N Benayad et al

(a)

(b)

Figure 6. (a) The phase diagram inT –c plane of the diluted mixed spin-1/2 and spin-1 Ising
system in a random transverse field on simple cubic lattice (z = 6), with p = 0 (bimodal
distribution). The number accompanying each curve denotes the value of0. (b) The phase
diagram inT –c plane of the diluted mixed spin-1/2 and spin-1 Ising system in a random
transverse field on simple cubic lattice (z = 6), with p = 0.2 (solid lines) andp = 0.6 (dashed
lines). The number accompanying each curve denotes the value of0.

figures, the obtained curves have the same shape as the dilution curve, and there appear
different thresholds as solutions of the equationTc(c, p, 0) = 0. We also note that the
critical temperatureTc falls with decreasingc andp, and increasing0.
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(a)

(b)

Figure 7. (a) The zero-temperature phase diagram of the diluted mixed spin-1/2 and spin-1 Ising
system in a random transverse field on simple cubic lattice (z = 6). The number accompanying
each curve denotes the value ofp. (b) The zero-temperature phase diagram of the diluted mixed
spin-1/2 and spin-1 Ising system in a random transverse field on simple cubic lattice (z = 6),
for different values ofp, on an enlarged scale withc in the vicinity of the percolation threshold.

On the other hand, the zero-temperature phase diagram for the system under study,
is of considerable interest. It is obtained from the solution of the (50) keepingTc = 0.
Figure 7(a) shows the dependence of the critical value0c on the concentrationc whenp
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takes different values. As clearly seen from figure 7(b), the part of the phase diagram near
the percolation thresholdc∗ represents an outstanding feature. In particular, forp = 0
the critical transverse field0c takes a finite value atc = c∗ and shows a discontinuity
change from a finite value to zero atc = 0.2637 belowc∗. This result may support the
conjecture made by Harris [8] for the diluted transverse Ising model (DTIM), which can
be summarized as follows: at percolation thresholdc∗, the critical transverse field should
display a discontinuity. It is worthy of notice here that the investigation of the DTIM
by series expansion techniques [48], CPA treatments and effective-field theory [50] led to
a critical transverse field0c which reduces continuously to zero atc = c∗. However, the
position space renormalization group methods [9, 51] showed the existence of a discontinuity
of 0c at c = c∗, and therefore they verified the Harris conjecture. On the other hand, when
the transverse random field is taken as a trimodal distribution (i.e.p 6= 0) 0c shows, for a
given value ofp, a discontinuity similar to that found in the case of bimodal distribution
(p = 0) as shown in figure 7(b). The discontinuity of0c is located on a (p-dependent)
well defined value ofc, and its height increases with increasingp. We can also see in
figure 7(b) that, for all values ofp, the discontinuities appear only in a narrow range of
c (0.2637 < c < c∗), and atc = c∗ the critical field0c takes a finite value which is
independent of the value ofp.

Next, let us clarify the role of the applied random transverse field in the diluted mixed
spin-1/2 and spin-1 Ising system. To this end, we have examined its phase diagrams in the
(T , 0) space, selecting two values ofc (c = 0.29 andc = 0.28) greater and less than the
percolation thresholdc∗ = 0.282 46. For the case of the bimodal distribution (p = 0), the
results are plotted in figure 8(a). For the system withc = 0.29, the variation of the critical
temperature with the transverse field takes the same form as those depicted in figure 3
since c > c∗. As shown in the figure, an important behaviour of the system is found
with c = 0.28 (c less thanc∗): Tc reduces to zero at0 = 0 but, in a certain range of0
(0 < 0 < 0c) the system exhibits a second-order transition at a finite value ofTc which
vanishes at0 = 0c. These results indicate that for small transverse field strength, the
system may have a magnetic ordering even ifc is less thanc∗. As seen from figure 7(b),
such behaviour may be obtained in the system when the dilution parameter belongs to
the range 0.2637< c 6 c∗. On the other hand, when the transverse field is trimodally
distributed (p 6= 0), the phase diagrams are represented in figure 8(b) for various values
of p, when the concentrationc takes the above values. Thus, forc = 0.29, theTc curves
are plotted forp = 0.2 andp = 0.99 which are, respectively, less and greater than its
corresponding critical valuep∗ = 0.983 (see figure 4). The obtained transition lines have
the same shape as those shown in figure 5. For the case ofc = 0.28 the variation ofTc with
0, for different values ofp, are represented in figure 8(b). They are qualitatively similar
to the results (figure 8(a)) obtained for the bimodal distribution whenc < c∗. In contrast
to the casec > c∗, we notice that, for a givenc < c∗ (c = 0.28 in figure 8(b)), the region
which corresponds to the long-range ferromagnetic order, decreases with increasingp and
disappears at ac-dependent value ofp (see figure 7(b) and figure 8(b)). Therefore, whenc
is less than 0.2637, there is no magnetic ordering for any values ofp and0.

4. Conclusions

In this paper, we have studied the undiluted and the diluted mixed-spin Ising systems
consisting of spin-1/2 and spin-1 in a transverse random field, which is bimodally and
trimodally distributed. We have used an effective field method within the framework of a
single-site cluster theory. In this approach, we have derived the equations using a probability
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(a)

(b)

Figure 8. (a) The phase diagram of the diluted mixed spin-1/2 and spin-1 Ising system in a
bimodal transverse field on simple cubic lattice (z = 6), whenc = 0.29 andc = 0.28. (b) The
phase diagram of the diluted mixed spin-1/2 and spin-1 Ising system in a random transverse
field on simple cubic lattice (z = 6), whenc = 0.29 (dashed lines) andc = 0.28 (solid lines)
with various values ofp.

distribution method based on the use of Van der Waerden identities accounting exactly for
the single-site kinematic relations. We have also included the correlation between the site
disorder and the local configurational-dependent thermal average of the spin operators.
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For the undiluted mixed-spin Ising system on simple cubic lattice, we have investigated
the variation of the critical temperatureTc with the transverse field0 for various values of
p (p measures the fraction of spins not exposed to0). We have not found a discontinuity
in the ground state phase diagram between the bimodal (i.e.p = 0) and trimodal (i.e.
p 6= 0) random-field distributions. This result agrees with Yokota’s conjecture [30]. It is
worthy to note here that the discontinuity found atT = 0 in the spin-1/2 Ising models in a
transverse random field [25, 28] may be explained [30] as an artifact of the used mean-field-
like approximations. On the other hand, we have defined a critical valuep∗ separating two
qualitatively different behaviours of the system: forp less thanp∗, the system exhibits, at
the ground state, a phase transition at a finite critical value0c of the transverse field0.
However, forp greater thanp∗, 0c does not exist and the ordered state is stable at very
low temperatures for any value of the transverse field strength.

For the site-diluted case, we have investigated the phase diagrams of the system for
different values of the dilution parameterc, when the transverse random field is taken as a
bimodal distribution. We have found that for the values ofc greater than the percolation
thresholdc∗ = 0.2824, Tc decreases with decreasingc and increasing0. When the
transverse random field is trimodally distributed, we also have noted (as in the pure case) the
existence of the critical valuep∗ which increases with decreasing values ofc. Furthermore,
we have plotted the zero-temperature phase diagram in the0c–c plane for various values
of p. Near the percolation threshold, the phase diagrams represent an outstanding feature.
First, at c = c∗ the critical transverse field0c takes ap-independent finite value, and
exhibits a discontinuity change from a finite value to zero at ap-dependent value ofc
below c∗. In particular, for the casep = 0, this may support the Harris conjecture [8]. We
mention that the location of these discontinuities (for 06 p < 1) appears in the narrow
range 0.2637< c < c∗. Secondly, in this latter range, we have found that the system may
have a magnetic ordering in a well defined range of the transverse field, and this behaviour
disappears whenc approaches 0.2637.
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